A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle.

نویسندگان

  • J A Jeneson
  • H V Westerhoff
  • M J Kushmerick
چکیده

A system analysis of ATP free energy metabolism in skeletal muscle was made using the principles of metabolic control theory. We developed a network model of ATP free energy metabolism in muscle consisting of actomyosin ATPase, sarcoplasmic reticulum (SR) Ca(2+)-ATPase, and mitochondria. These components were sufficient to capture the major aspects of the regulation of the cytosolic ATP-to-ADP concentration ratio (ATP/ADP) in muscle contraction and had inherent homeostatic properties regulating this free energy potential. As input for the analysis, we used ATP metabolic flux and the cytosolic ATP/ADP at steady state at six contraction frequencies between 0 and 2 Hz measured in human forearm flexor muscle by (31)P-NMR spectroscopy. We used the mathematical formalism of metabolic control theory to analyze the distribution of fractional kinetic control of ATPase flux and the ATP/ADP in the network at steady state among the components over this experimental range and an extrapolated range of stimulation frequencies (up to 10 Hz). The control analysis showed that the contractile actomyosin ATPase has dominant kinetic control of ATP flux in forearm flexor muscle over the 0- to 1.6-Hz range of contraction frequencies that resulted in steady states, as determined by (31)P-NMR. However, flux control begins to shift toward mitochondria at >1 Hz. This inversion of flux control from ATP demand to ATP supply control hierarchy progressed as the contraction frequency increased past 2 Hz and was nearly complete at 10 Hz. The functional significance of this result is that, at steady state, ATP free energy consumption cannot outstrip the ATP free energy supply. Therefore, this reduced, three-component muscle ATPase system is inherently homeostatic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomonitoring the skeletal muscle metabolic dysfunction in knee osteoarthritis in older adults: Is Jumpstart Nutrition® Supplementation effective?

Background: This study aimed to investigate the efficacy of Jumpstart Nutrition® dietary supplement (JNDS) for enhancing the skeletal muscle metabolism and function of older adults with knee osteoarthritis (KOA) by evaluating the biomarkers of aberrant levels of serum tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), C-reactive protein (CRP), creatine kinase-muscle (CK-MM), and aldol...

متن کامل

In vivo modular control analysis of energy metabolism in contracting skeletal muscle.

We used (31)P MRS (magnetic resonance spectroscopy) measurements of energetic intermediates [ATP, P(i) and PCr (phosphocreatine)] in combination with the analytical tools of metabolic control analysis to study in vivo energy metabolism in the contracting skeletal muscle of anaesthetized rats over a broad range of workload. According to our recent MoCA (modular control analysis) used to describe...

متن کامل

Contraction duration affects metabolic energy cost and fatigue in skeletal muscle.

It has been suggested that during a skeletal muscle contraction the metabolic energy cost at the onset may be greater than the energy cost related to holding steady-state force. The purpose of the present study was to investigate the effect of contraction duration on the metabolic energy cost and fatigue process in fully perfused contracting muscle in situ. Canine gastrocnemius muscle ( n = 6) ...

متن کامل

Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.

Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a phy...

متن کامل

Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions.

High-frequency stimulation of skeletal muscle has long been associated with ionic perturbations, resulting in the loss of membrane excitability, which may prevent action potential propagation and result in skeletal muscle fatigue. Associated with intense skeletal muscle contractions are large changes in muscle metabolites. However, the role of metabolites in the loss of muscle excitability is n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 279 3  شماره 

صفحات  -

تاریخ انتشار 2000